If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y-6+50y^2=0
a = 50; b = 5; c = -6;
Δ = b2-4ac
Δ = 52-4·50·(-6)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-35}{2*50}=\frac{-40}{100} =-2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+35}{2*50}=\frac{30}{100} =3/10 $
| -w=4w-30 | | 6y=–54 | | 5y-6+50y=0 | | 6n−7−3n=3n−7 | | x*43/8+x=11200 | | –4f=–92 | | -6x+-5=1x+5 | | x*53/8+x=11200 | | t+8=100 | | 7+2x=3+4x=1+5x | | -3x-2=65 | | -18+3x=0 | | x^2+16x+48=8 | | 3/4x+-1/2=9/8x+3/2 | | 8+3(2x+5)=4x-13 | | 1.1a+1.3=4.82 | | -64x-70=x(-14) | | x+137+50°=180 | | 14(x+12)²=350 | | 2(5x-5)=3x-5 | | 5x2-x=3x2-23 | | 4+3x+1=6 | | -7x=4x2+12 | | ×⁴-4x-1=0 | | (30)(x)=30x | | 30x(x)=30x | | m—46=72 | | 8x2+x=-5 | | 6(a-10)=-30 | | -27c=-702 | | -80=g-97 | | 3⋅4+a=-1 |